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We investigate the combined role of coagulation and annihilation in processes involving particles of
two kinds. When two clusters meet they either coagulate (if they contain particles of the same kind) or a
pairwise annihilation of particles according to the 4 +B—0 scheme takes place, so that (at most) one
cluster survives. We monitor the temporal evolution of the number of particles and of the number of
clusters in the system. We present numerically determined scaling laws, which we justify through

analytical considerations.

PACS number(s): 05.40.+j, 82.20.Mj

INTRODUCTION

The basic bimolecular reaction 4 +B —0 was investi-
gated extensively in the past decade, based on the
discovery of its fluctuation-dominated kinetics [1,2]. The
reaction shows a large number of (highly nontrivial) scal-
ing features (with respect to the number of particles, to
the front forms, and to the self-organization [3-17])
which are due to fluctuation effects.

Nonetheless, the standard system A4+B—0 is
oversimplified, in that no particle interactions (except for
the reaction of particles of different kinds) are considered.
Such interactions are of utmost importance in recombina-
tion of charge carriers in semiconductors and in charged
particle-antiparticle annihilation processes [17-19]. In
former works [20,21] we have investigated situations with
interactions, and have displayed the ensuing nonlinear
equations [similar to those of Kardar, Parisi, and Zhang
(KPZ) [22]].

Here we consider short-range forces, which involve
both particles of the same and of different kinds. We
start with an equal number of 4 and B particles and fol-
low the scheme introduced by Krapivsky [23,24]. If two
clusters of particles of the same kind, containing n and m
particles, respectively, meet each other, they coagulate
and form a cluster with n +m particles; if two clusters
containing particles of a different kind meet, they form
one new cluster containing |n —m/| particles of the kind
that was in the majority. The reaction thus reads

A+ A, —> Ay > (1a)
B,+B,—>B,pn (1b)
and
A,+B,—P, (1c)

where the product P depends on p=n—m and is 4, for
p>0,B_, for p <0, and O for p =0.

*Also at P. N. Lebedev Physical Institute of the Academy of
Sciences of Russia, Leninsky Prospekt 53, Moscow 117924, Rus-
sia.

1063-651X/94/50(3)/2335(4)/$06.00 50

Attractive elastic forces in solids or van der Waals
forces in liquids, which act on all particles involved
[17,19], lead to Egs. (1); for biological applications of this
scheme, see Refs. [23,24]. Note that at long times the
concentration of clusters gets small and the details of the
short-range forces are irrelevant; the main role of the
forces is to stabilize the clusters.

Note that a realistic study of clusters has to account
for the dependence of the diffusion coefficient D and of
the reaction radius r, on the mass of the cluster. Let m
be the number of particles inside the cluster. Now D and
ro depend both on m and also on the structure (i.e., com-
pact, linear, or fractal) of the object, an important aspect
in polymerization, in colloidal aggregation, and in the
coalescence of droplets (see Refs. [25-27]). For example,
one expects D~m ~? and ry~m? (e.g., for a spherical
cluster in three dimensions (3D) one has, according to
Stokes’ law and Einstein’s relation, p =1).

SIMULATIONS

We model the diffusion of the particles and of the clus-
ters through nearest-neighbor random walks on lattices,
taking a square and a simple cubic lattice in 2D and in
3D, respectively. In all cases the total number of sites is
set to 10%, which corresponds to linear dimensions of 10°,
103, and 10% in d=1, 2, and 3, respectively. Periodic
boundary conditions are used. With dimension d =2 and
3 the maximal simulation time T, is limited by finite-
size effects; we take T,, =3%X10*in d =2 and T, =10*
in d =3, respectively. The initial number of particles of
each kind is 10°. For simplicity we take that each cluster
occupies one lattice site, which implies ¢ =0. When two
clusters meet on the same site, they react according to
Egs. (1). During one time step of the algorithm, we check
each cluster once on the average to see whether it moves.
To account for the dependence of the diffusion coefficient
on the cluster’s mass, we take the probability for a cluster
to make a step to be exactly m ~P. For p we use here
p=0,1, and 2.

We monitor the concentration of particles, n(¢), and
that of clusters, N (¢). The results of the simulations are
shown in Figs. 1-3 on double-logarithmic scales. The
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FIG. 1. The time dependence of the concentration of parti-
cles, n (t) (solid lines) and that of clusters, N (t) (dashed lines) in
1D. The curves correspond to p =2, 1, and 0, from top to bot-
tom. See the text for details.

data presented for p =0 in 2D and 3D are averaged over
five realizations of the system; the rest of the data corre-
spond to one realization each.

From the figures we readily infer that at longer times
both n (¢) and N (¢) follow power laws. One has

n(t)~t= ¢ @)
and
N(t)~t™F . (3)

In Table I we give the values of the exponents a and 8
obtained from a least-squares fit to the data in the time
interval 100<¢ <T ... One observes the close similarity
of the 2D and 3D data and the fact that f=2a. Note
that the numerical values of @ and 8 for p=0in d =1 are
close to ; and 1, respectively, as obtained in Ref. [24],
while the values for p =0 in d =2 and 3 are close to the
mean-field exponents } and 1.

SCALING APPROACH

Here we present some theoretical arguments to justify
these findings and to express a and [ analytically. This
also sheds light on the critical dimension of the problem;

log,,t

FIG. 2. Same as in Fig. 1, but for d =2.
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FIG. 3. Same as in Fig. 1, but for d =3.

as we proceed to show, this marginal dimension separates
two different regimes, both of which are fluctuation dom-
inated. In this respect our reaction scheme is
significantly different from the one considered by Ovchin-
nikov and Zel’dovich [1], by Kang and Redner (3,4], and
by Zumofen, Blumen, and Klafter [5].

First we consider the situation in d <2, for which the
random walks are compact, and start from the visited-
volume picture of the reaction [5]. In the late stages of
the reaction (when the monomer density gets to be low),
the cluster coagulation proceeds mainly according to the
simple C+C —C scheme: a full annihilation (disappear-
ance) of two colliding clusters occurs only in the rather
improbable situation that they consist of an equal number
of particles of different kinds. Let us denote by V() the
mean volume (number of lattice sites) visited by the clus-
ter during the time z. Clusters within the same volume
explore essentially the same territory and hence react
with each other. Assuming that at time ¢ there is one
cluster per mean visited volume V' (¢), one has

N@)=V ") . (4)

The visited volume is related to the diffusion length L (7)
through

V)=L%t), (5)

while L (¢) depends on the number of particles in the
cluster through the diffusion coefficient. The picture is
that the cluster simply gathers all the particles that exist-
ed at the beginning within its visited volume; thus the
mean number of particles inside the cluster is equal to the
number of excess particles of one kind within the volume.
According to Poisson statistics, the last quantity is pro-
portional to the square root of the total initial number of
particles within V' (1), i.e.,

m(t)~[n(0)V()]'/*.
The mean concentration of particles is then
n(=m®N@)=n(0)?V"121) . 6)
From Eqgs. (4) and (6) one concludes that a=f/2 and

that m (¢)~¢“. Now we consider the time dependence of
the diffusion length,
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TABLE I. Values of the exponents a and B obtained from a least-squares fit to the data in the time

interval 100<t < T,,.

d=1 d=2 d=3
Num. Scal. Num. Scal. Num. Scal.
p=0 a 0.24 1 0.45 1 0.50 i
1
B 0.47 7 0.89 1 0.98 1
p=1 a 0.19 % 0.30 % 0.31 %
B 0.38 2 0.60 2 0.61 2
p=2 a 0.15 % 0.23 } 0.23 %
1
B 0.31 % 0.48 3 0.46 3

Lo=|[owar] "~ |['mrwar|”,

and obtain for the exponent B using Egs. (4), (6), and (7):

2d

B a+pd (8)
The values of the exponents a and B obtained according
to Eq. (8) are also listed in Table I. The numerical values
for the exponents in 1D are in good agreement with our
scaling estimate, Eq. (8). The larger deviations in 2d let
us suspect the appearance of logarithmical corrections,
which are not rendered well by simple scaling.

Note that in the case p =0, the exponent a=8/2=d /4
is the same as for the 4 + B —0 reaction without cluster-
ization. This may lead to the (unwarranted) conclusion
that in this case the coagulation is in line with the stan-
dard scaling approach of Refs. [3,4], which assumes that
the slowest relaxation in the system (which determines
the reaction’s behavior) is the diffusional smoothing of
the concentration fluctuations. As we proceed to show,
turning to d =3, cluster coagulation is even slower, so
that it is decisive for the decay pattern.

The small differences in the numerically determined ex-
ponents a and S for 2D and for 3D witness in favor of the
hypothesis that d =2 is marginal, in fact, distinct from
fluctuation-controlled kinetics, whose marginal dimen-
sion is d =4. For p=0 it can be also seen from the fact
that in d =2 the values of exponents given by Eq. (8)
coincide with their mean-field values obtained in Refs.
[23,24]. Hence the transition is related here to the com-
pactness of the random walks rather than to the smooth-
ing out of the fluctuations.

Now we present scaling considerations for the case
2 <d <4 and take into account the fact that in d >2 the
random walks are not compact, so that Eq. (5) no longer
holds. On the other hand, for cluster coagulation, Egs.
(4) and (6) are still valid. For d >2 the concentration of
clusters, which obeys C + C — C, is well described by

dN (1) _
dt

where k is a reaction-rate coefficient [5,7,28]. For con-
stant D and reaction radius 7, one has k ~Drg 2. If one
lets D and r, depend on the cluster size, say, as
D~m Pand ry~m9, then D, ry,, and k become time

—kNXz1) , 9)

dependent. Integrating Eq. (9) in this case gives, for not-
too-short times,

N(t)_lzfolk(t)dt“'fotD(t)[ro(t)]d—zdt
~f0'[m(t)]—1’+‘d—2’4dt . (10)

We now estimate m (¢). From Egs. (4) and (10) it follows
that

Vo~ [ Imn]7 "4t . (11)

On the other hand, m (¢) is proportional to the number of
excess particles of one kind within the visited volume,
i.e.,

m(t)~[n(0)V ()] .

This, together with Eq. (11), determines V' (¢) and then
N(t). Setting N(1)~t~#, ie, V(t)~tP, one has
m (t)~t#’2, which with Eq. (11) leads to the relation

2

B= 24p—q(d—2) °

(12)

For the special case r,=const (i.e., ¢ =0) used in our
simulations, it follows that

2
=— 13
B 2+p (13)

In d=2, Eq. (13) coincides with Eq. (7), showing that
d=2 is marginal, in agreement with our discussion
above. Moreover, a follows from Eq. (6), a=B/2. These
values for a and B are also presented in Table I. Note
that the marginal dimension d =2 separates two different
fluctuation-controlled (nonclassical) regimes, as m (¢) and
therefore n () are governed by Poisson fluctuations.

CONCLUSIONS

Here we considered a basic model for the 4 +B—0
reaction under coagulation. The numerical simulations
and a scaling analysis show that the decay laws are
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governed by cluster coagulation, which is slower than the
smoothing out of the fluctuations. We calculated the ex-
ponents of the decay laws as a function of the dependence
of the diffusion on cluster size. The marginal dimension
for the reaction is 2; it divides two different regimes, both
of which are fluctuation dominated.
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